THE ADVERTISER.
pounnoutrour.
\triangle WARNING FROM THE SAWDUST

 Ihy mparfueus to the stagori

 At Mam titame into my haut

THE STORY OF THE TIDES

What They Tell or the Growing Length of the Dhy nand of the Birth of the

From a scientific point of view, the
work done by the tides is of unspeakable importance. Whence is this enerorerived with which the tides do their
work? If the tides are caused by the moon, the energy they possess must
also be derived from the moon. This
mot looks plain enough, but unfortunately
it is not true. Would it be true to as serithat the thinger of the riteman
which pulls the trger supplies the en-
ergy with which the rifle-bullet is anienergy is derived from the explosion
of the gunpowder, and the pulling of the trigger is merely the means by
which that energy ilierated. In i
womewhat similar somewhat similar n.
produced by the n whereby a part of the energy stored in
the earth is compelled to expend itself in work. Let me illustrate this by a
comparison between the earth rotating gine. The ffy-wheel is a sort of reser-
goir into which the engine pours its The various mach stroke of the the mill mento-
phe
ly draw oft the power from the ly draw off the power from the store
necumalated in the fly-wheel. The
earth is like earth is like a gigantic fly-wheel de-
tached from the engine, , hoogh still connected with the machines in the mill
In that mighty fly-wheel a stupendous a stupendous quantity of energy
woutd be given out before that fly-
wheel would earth's rotation is the reservoir from require for doing work. Hence it it
that though the tides are caued gy they draw on the supply re ener hand in the rotation of the earth. The
earth differs from the tly-wheel of the earth diners rrom the ny-wheel of the
engine in very important point. As
the energy is withdrawn from the flywheel by the machines in the mill, so it
is restored thereto by the power of the
steam-engine, and the fly runs uniformly. But the earth is mevely the fly
wheel without the engine. When the gy from the earth, that energy is never
restored. It, therefore, follows that the earth's rotation must be decreasing.
This leads to a consequence of the most
wonderful importance. It tells us that the speed with which the earth rotate on its axis is diminishing. We can
state the result in a manner which ha
the merits of simplicity and brevity. The tides are increasing the length
the day. At present, no doubt, the ef feet of the tides in changing the len
of the day is very small. not appreciably longer than a day a
handred years ago. Even in a thou
sand years the change in the length of But the is only a fraction of a second that the change, slow though it is, lie
always in one direction. The day i
continually increasing. In millions o years the accumulated effect becomes
not only appreciable, but even of startling magnitude.
The change in the length of the day
must involve a corresponding change in the motion of the moon. If the moon
aets on the earth, so, conversely, does the earth react upon the moon. The strives to drive away its persecutor. At
present the moon revolves round the earth at a distance of abont 240,00
miles. The reaction of the earth tend to increase that distance, and to force
the moon to revolve in an orbit which As thousands of years roll on, th length of the day increases second by increases mile by mile. A million yea ago the day, probably, contained sorne
minutes lees than our present day of
twenty-four hours. Our retrospect does not halt here: we at once project our
view back to an incredibly remote

epoch which was a erisio in the history of our system. It must have been at	
sphere, but there is a protuberance at tell us, the earth is shaped like an	
the greater is the protuberance. If, however, the rate of rotation exceeds i	
the earth couthd no longerer cling toge eth	
would be overcome by sentrifugal force and a general break-up would oceur	
It can be shown that the rotation of the earth when on the point of ruptare cor-responds to a lemyth of the day some-	
where about the critical value of three hours which we have already adopted. It is therefore impossible for us to sup-	
It is therefore impossible for us to suppose a day much shorter than three hours.	
otes and examine the past history of thu moon. Wo have geen tue moon widening orbit, and consequeatly the	
moon in ancient times mast have beennearer the earlt than it it nowdoubt the change is low. There is not doubt the change is slow. There is notmutch differenees between the orblit of	
the moon a thonsand years ago nud the orbit in which the moon is now mov-ing. But when we rise to millions of	
years the difference becomes very ap-preciable. Thirty or forty millions of thance. Thirty or fa guch closer to	
years aro the moon was much closer itthe earth than it is at preesent, very poss. sibly the moon was then only half it present distance. We must, however,	
look still eatiliee, ton a certain epoch notless than fifty millions of y yars aro.	
At that epoch the moon must have heo.so cose to the earth that the two bodioswere almost touching. Everybody	
knows that the moon revolves nowaround the earth in a period of twentyseven days. The period depends upo	
the distance between the earth and the moon. In earlier times the month musthave been shorter than our present mave becn alo	
have been sthorter than our present moon completed its journey in a week, instend of taking	
instead of taking twenty-ecight dyys, , , nt present. Looking back eariuer shin,we find the month hins dwindled down	
to a day, then down to a few hours, until at that wondrous epoch, when themoon was almost touching the earth,	
the moon spun around the earth once every three houfs.	
Yet it is not partly covered with oceansand partly clothed with verdure. The primeval arth seems rather a tiery and	
half-molton masy, where no organic life can dwell. Instead of the attmosphere	
which we now have, see a dense mass of vapors, in whe earth are suspended as	
clonds I see that the sum still rixes and sets to tive the sucecession of day and of night., but the day and the	
together only amount to three hours,instead of twenty-four. Almost touching the chaotic mass of the earth is a	
Humorous Writing.	
Almost every one privately indulgosin the idea that he would hecomea celein the ideathar he woult if he were onlybrated humorist writer to try.	
H_{4} takes up a magazine or newspaper and reads a humorons article, and	
says th himself: "etter thin that."could do vastly bow, and try.	
If yon can produce a first-class sketcle your fortume is, made. You need not	
cents a yard You can a jutt to on withyour firstilass humor, and tix your ownvalun	
valuation upon it, never fearing but it will be paid.	
mistaken. This humorous business is much easier in theory than in practice	
Anybody can criticise and find faultwith our funy writers, but the questionis, can that same	
better? If so, let him do it do any	
thing to sit down with a pen in yourfingers and a sheet of paper before youand indite thonghts which shall eon-	
vulse the world with laughter, and sayings which shall be repeated for year to come.	

